Translating Arden MLMs into GLIF Guidelines – A Case Study of Hyperkalemia Patient Screening

Dongwen Wang, PhD
Department of Biomedical Informatics
Columbia University

Presented by Dr. Mor Peleg

CGP 2004
April 14, 2004
Background

• Arden Syntax at CPMC
 – More than 200 MLMs
 – No longer executable due to Y2K
 – Need to re-examine the knowledge in MLMs

• GLIF/GLEE at CPMC
 – Representation format for guideline
 – Execution engine to interpret guideline knowledge when applied to specific patient cases

• Translating Arden MLMs into GLIF guidelines
Goal

• Study the feasibility of medical knowledge translation
 – Arden \(\rightarrow\) GLIF as an example
 – Hyperkalemia patient screening as a specific case
• Identify issues arose during the translation process
• Propose potential solutions
maintenance:
 title: Screen for hyperkalemia in critical value range (> 6.0);
 filename: HYPERKALEMIA;
 version: 1;
 institution: Columbia-Presbyterian Medical Center;
 author: Pete Stetson (peter.stetson@dbmi.columbia.edu);
 specialist: Jai Radhakrishnon, MD, John Crew, MD;
 date: 2003-09-16;
 validation: test;

library:
 purpose: To monitor for patients who have a critically elevated potassium level;
 explanation: When a potassium lab result is stored, a warning is sent if it is > 6.0 mg/dl. If the patient is in renal failure a lower threshold K+ value is used;
 keywords: potassium, hyperkalemia;

knowledge:
 type: data-driven;

data:
...
 raw_potassiums := read last 3 from {'dam'="PDQRES2";
 '1301','1608','1609','1610','1656','1698','32713','33803','35455','35975',
 '35993','35994'} where they occurred within the past 3 months);
...

evoke: k_storage_event;

logic:
...
 creatinine := last (raw_creatinine where it is number);
...
 if potassium >= cut_off then
 conclude true;
 else
 conclude false;
 endif;
...

action:
 write "This patient has a critically elevated K+ of " || potassium || " meq/dl on " ||
 time of potassium || " and is at risk for potassium toxicity.";
end:
Guiding Principles for Translation

• Top level
 – MLM instance \rightarrow GLIF guideline instance

• Knowledge role mapping
 – Slots of MLM \rightarrow slots of GLIF classes

• Procedure code translation
 – Logic slot of MLM \rightarrow GLIF guideline steps
<table>
<thead>
<tr>
<th>MLM Slots and Statements</th>
<th>GLIF Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLM (1)</td>
<td>Guideline (1)</td>
</tr>
<tr>
<td>maintenance.title (1)</td>
<td>Guideline.maintenance_info.title (1)</td>
</tr>
<tr>
<td>maintenance.filename (1)</td>
<td></td>
</tr>
<tr>
<td>maintenance.version (1)</td>
<td>Guideline.maintenance_info.encoded_guideline_version (1)</td>
</tr>
<tr>
<td>maintenance.institution (1)</td>
<td>Guideline.maintenance_info.developing_institution (1)</td>
</tr>
<tr>
<td>maintenance.author (1)</td>
<td>Guideline.maintenance_info.author (1)</td>
</tr>
<tr>
<td>maintenance.specialist (1)</td>
<td>Guideline.maintenance_info.author (1)</td>
</tr>
<tr>
<td>maintenance.date (1)</td>
<td>Guideline.maintenance_info.authoring_date (1)</td>
</tr>
<tr>
<td>maintenance.validation (1)</td>
<td>Guideline.maintenance_info.representation_status (1)</td>
</tr>
<tr>
<td>library.purpose (1)</td>
<td>Guideline.didactics.items.material (1)</td>
</tr>
<tr>
<td>library.explanation (1)</td>
<td>Guideline.didactics.items.material (1)</td>
</tr>
<tr>
<td>library.keywords (1)</td>
<td>Guideline.didactics.items.material (1)</td>
</tr>
<tr>
<td>knowledge.type (1)</td>
<td></td>
</tr>
<tr>
<td>knowledge.data (1)</td>
<td>Event (1)</td>
</tr>
<tr>
<td>knowledge.data (4)</td>
<td>Variable_Data_Item (4)</td>
</tr>
<tr>
<td>knowledge.data (4)</td>
<td>(leave to local system)</td>
</tr>
<tr>
<td>knowledge.evoke (1)</td>
<td>Triggering_Event (1)</td>
</tr>
<tr>
<td>knowledge.logic.assignment_statement (6)</td>
<td>Action_Step (7), Variable_Data_Item (5)</td>
</tr>
<tr>
<td>knowledge.logic.if_then_statement (5)</td>
<td>Case_Step (4), Three_Valued_Criterion (3)</td>
</tr>
<tr>
<td>knowledge.action (1)</td>
<td>Patient_State_Step (2)</td>
</tr>
<tr>
<td></td>
<td>Action_Step (1), Literal_Data_Item (1)</td>
</tr>
</tbody>
</table>
Translated GLIF Algorithm
Validity Testing

• Use GLEE as a tool
 – Simulate the application of the translated knowledge to specific patient cases

• Domain expert created 5 simulated cases
 – Represent typical patients
 – Cover all possible execution paths

• For each of the 5 cases, the actual result matched with the expectation (the gold standard developed by the domain expert who created the cases)
Problems Identified

- Mix-up of general medical knowledge and local policy in MLM
 - Need to use different approaches
- Flow control
 - Procedure translation
 - Insertion of patient state step implied
- Data definition
 - The curly braces problem
- Event-driven execution
 - Batch-mode processing to improve performance
Potential Solution

• Manual translation
 – Labor-intensive, error-prone, difficult to generalize
• Potential solution: automatic translation
 – Direct translation could be difficult (overlapping of different models)
 – Development of an intermediate layer as the target of translation
 – Formalize individual models (procedures, etc.)
 – The guiding principles as the starting point of a set of mapping rules that facilitate the translation
Conclusion

- Feasible to translate the medical knowledge embedded in the Arden MLMs into the GLIF format
- Significant efforts are necessary to handle the problems in the translation
- Automatic translation could be a more generalizable approach for future work
Acknowledgment

• Grant support
 – NASA MITAC contract 528753 to the Patient Health Monitor project at CPMC

• Research team
 – Drs. Pete Stetson, Yves Lussier, Eneida Mendonca, Vimla Patel, Ted Shortliffe

• Presenter
 – Dr. Mor Peleg

All positive comments are attributed to the presenter. All negative comments are the author’s responsibility.