Advanced Temporal Data Abstraction for Guideline Execution

Andreas Seyfang and Silvia Miksch
Vienna University of Technology
Austria
Overview

• Motivation
 – Why Guideline Execution
 – Why Temporal Data Abstraction

• Definitions

• Abstractions with example

• Strength & limitations
Why Guideline Execution?

- Deliver the right recommendation at the right time
 - Reduce information overload
 - Improve quality of health care
- Prerequisites
 - Information about patient state
 - Formal representation of guideline
Why Data Abstraction?

• Integration into clinical data flow necessary

 Additional data entry
 = additional work
 = barrier to usage of
 guideline execution system
Why Data Abstraction?

• Integration into clinical data flow necessary

• Gap between raw data and medical concepts
 – Quantitative raw data:
 11:23:05 SpO2=96%
 11:23:06 SpO2=95%
 11:23:07 SpO2=96%

 – Qualitative medical concept:
 sufficient oxygen supply in artificial ventilation
Why *Temporal* Data Abstraction?

• Temporal dimension crucial part of medical concepts (often implicit)
 – *Recent* readings of SpO2

• Combinations of different time windows necessary
 – Short term trend can invalidate long term observation
The Big Picture

Andreas Seyfang & Silvia Miksch

Plan Library

INSTANTIATED PLANS

Temporal Data Abstraction

Guideline Execution

INPUT

Time-Oriented

Patient Data

Raw Data

Qualitative High-level Information

Context
Definitions

• Parameter = Variable plus history of measurements
• Episode = period of time during which a parameter has a certain value
• Parameter proposition
 = parameter
 + value constraint
 + context
 + temporal constraints
In artificial ventilation, hypoxic episode is a period of time lasting longer than 4 seconds during which the SpO2 reading is below 80.

• Solution
 – Parameter proposition
 – Parameter name: SpO2
 – Value constraint: less than 80
 – Context: artificial ventilation
 – Minimum duration: 4 seconds
Abstractions

• Qualitative values
• Sliding time windows
• Statistical measures
• Time/date oriented abstraction
• Repetitions
Combinations/Temporal Patterns

- Logical
 - and, or
- Arithmetic
 - sum, difference

- Different parameter propositions
- Aggregates of different time ranges
Complex Example

Overshooting hyperoxy is an episode of dangerously increased SpO2 which starts at less than 20 seconds after a hypoxic episode. SpO2 > 96 considered dangerous.

• Solution
 – Hypoxy as before
 – Hyperoxy similar but time constraint: Latest start 20 seconds after end of hypoxy
Interactive Configuration

Andreas Seyfang & Silvia Miksch
Strengths

• Detection of episodes
• Aggregates for sliding time windows
• Monitoring of repetitions
• Free combination of abstractions
Limitations

- Knowledge acquisition
- Access to all required inputs
- Integration with precise formalized guideline
- Some abstractions not implemented
Conclusion

• Guideline execution needs temporal data abstraction

• Temporal data abstraction needs guideline execution