Decision Support and Knowledge Management in Oncology using Hierarchical Classification

Mathieu d’Aquín, Sébastien Brachais, Jean Lieber et Amedeo Napoli

LORIA, équipe Orpailleur
{daquin, brachais, lieber, napoli}@loria.fr
Overview of the talk

- Introduction: the Kasimir research project
 - Knowledge Management of medical protocols in oncology
Overview of the talk

- Introduction: the Kasimir research project
 - Knowledge Management of medical protocols in oncology
- Reasoning and knowledge representation in Kasimir
 - Syntax and semantics of a simple formalism for medical protocols
Overview of the talk

- Introduction: the Kasimir research project
 - Knowledge Management of medical protocols in oncology
- Reasoning and knowledge representation in Kasimir
 - Syntax and semantics of a simple formalism for medical protocols
- Editing and maintenance of knowledge
 - Usefulness of this representation formalism
Overview of the talk

- Introduction: the Kasimir research project
 - Knowledge Management of medical protocols in oncology
- Reasoning and knowledge representation in Kasimir
 - Syntax and semantics of a simple formalism for medical protocols
- Editing and maintenance of knowledge
 - Usefulness of this representation formalism
- Fuzzification of medical protocols and of the representation formalism
 - Taking into account the threshold effect
Overview of the talk

- Introduction: the Kasimir research project
 - Knowledge Management of medical protocols in oncology
- Reasoning and knowledge representation in Kasimir
 - Syntax and semantics of a simple formalism for medical protocols
- Editing and maintenance of knowledge
 - Usefulness of this representation formalism
- Fuzzification of medical protocols and of the representation formalism
 - Taking into account the threshold effect
- Ongoing researches of the Kasimir project
Introduction: The Kasimir research project

- Knowledge Management of medical protocols in oncology
Introduction: The Kasimir research project

- Knowledge Management of medical protocols in oncology
- Multidisciplinary research project with
 - experts in oncology from the centre Alexis Vautrin (Nancy);
 - researchers in psycho-ergonomics of the Laboratoire d’ergonomie du CNAM (Paris);
 - researchers in informatics from the Orpailleur research group of the Loria (Nancy);
 - members of the health network Oncolor (Lorraine region).
Introduction: The Kasimir research project

- Knowledge Management of medical protocols in oncology
- Multidisciplinary research project with
 - experts in oncology from the *centre Alexis Vautrin* (Nancy);
 - researchers in psycho-ergonomics of the *Laboratoire d’ergonomie du CNAM* (Paris);
 - researchers in informatics from the Orpailleur research group of the Loria (Nancy);
 - members of the health network Oncolor (Lorraine region).
- Main decision problem studied in the project: treatment of the breast cancer without metastasis.
Introduction: The Kasimir research project

- Knowledge Management of medical protocols in oncology
- Multidisciplinary research project with
 - experts in oncology from the centre Alexis Vautrin (Nancy);
 - researchers in psycho-ergonomics of the Laboratoire d’ergonomie du CNAM (Paris);
 - researchers in informatics from the Orpailleur research group of the Loria (Nancy);
 - members of the health network Oncolor (Lorraine region).
- Main decision problem studied in the project: treatment of the breast cancer without metastasis.
- The decision is based on a protocol.
KR in Kasimir

- A formalism inspired from object-based representation formalisms and description logics
KR in Kasimir

- A formalism inspired from object-based representation formalisms and description logics
- In this formalism, a concept C represents a set of individuals C^I, for an interpretation I.
KR in Kasimir

- A formalism inspired from object-based representation formalisms and description logics
- In this formalism, a concept C represents a set of individuals C^I, for an interpretation I.
- Building blocks: primitive concepts and numerical intervals
• A formalism inspired from object-based representation formalisms and description logics

• In this formalism, a concept C represents a set of individuals $C^\mathcal{I}$, for an interpretation \mathcal{I}.

• Building blocks: primitive concepts and numerical intervals

• A class of patients is represented by a defined concept based on
 – functional role restriction and
 – conjunction

\[
\text{small-int-tumour} \equiv (\text{size}: [0; 4] \sqcap \text{localisation}: \text{internal})
\]

\[
\text{WA}_{40-80}\text{SIT} \equiv (\text{sex}: \text{female} \sqcap \text{age}: [40, 80] \sqcap \text{tumour}: \text{small-int-tumour})
\]
KR in Kasimir

- A formalism inspired from object-based representation formalisms and description logics
- In this formalism, a concept C represents a set of individuals C^I, for an interpretation I.
- Building blocks: primitive concepts and numerical intervals
- A class of patients is represented by a defined concept based on
 - functional role restriction and
 - conjunction
- A treatment is represented by a primitive concept
KR in Kasimir

- A formalism inspired from object-based representation formalisms and description logics
- In this formalism, a concept C represents a set of individuals C^I, for an interpretation I.
- Building blocks: primitive concepts and numerical intervals
- A class of patients is represented by a defined concept based on
 - functional role restriction and
 - conjunction
- A treatment is represented by a primitive concept
- A protocol can be defined by a set of rules $R = (CP \rightarrow Ttt)$ where
 - CP represents a class of patients and
 - Ttt represents a treatment.
- R means that, for any patient of CP^I, a treatment of Ttt^I is proposed by the protocol.
Reasoning in Kasimir

- The reasoning is based on the subsumption relation between concepts:

\[C \sqsubseteq D \iff \text{for every } I, \; C^I \subseteq D^I \]
Reasoning in Kasimir

- The reasoning is based on the subsumption relation between concepts:

\[C \sqsubseteq D \quad \text{iff} \quad \text{for every } \mathcal{I}, C^\mathcal{I} \subseteq D^\mathcal{I} \]

- \(\sqsubseteq \) is a partial ordering that allows to organise a set of concepts representing classes of patients, including \(\top \), in a hierarchy \(\mathcal{H} \):

\[\text{for } CP_1 \text{ and } CP_2 \text{ in } \mathcal{H}, \quad CP_1 \sqsubseteq CP_2 \quad \text{iff} \quad CP_1 \rightarrow^*_{\mathcal{H}} CP_2 \]
Reasoning in Kasimir

• The reasoning is based on the subsumption relation between concepts:

\[C \sqsubseteq D \quad \text{iff} \quad \text{for every } \mathcal{I}, \ C^\mathcal{I} \subseteq D^\mathcal{I} \]

• \(\sqsubseteq \) is a partial ordering that allows to organise a set of concepts representing classes of patients, including \(\top \), in a hierarchy \(\mathcal{H} \):

\[
\text{for } CP_1 \text{ and } CP_2 \text{ in } \mathcal{H}, \quad CP_1 \sqsubseteq CP_2 \quad \text{iff} \quad CP_1 \rightarrow^*_{\mathcal{H}} CP_2
\]

• If \(tgt \) is a concept representing a patient, the hierarchical classification of \(tgt \) in \(\mathcal{H} \) highlights the concepts \(CP \) of \(\mathcal{H} \) such that \(tgt \sqsubseteq CP \).
Reasoning in Kasimir

- The reasoning is based on the subsumption relation between concepts:

\[C \sqsubseteq D \iff \text{ for every } I, C^I \subseteq D^I \]

- \(\sqsubseteq \) is a partial ordering that allows to organise a set of concepts representing classes of patients, including \(\top \), in a hierarchy \(\mathcal{H} \):

\[
\text{for } CP_1 \text{ and } CP_2 \text{ in } \mathcal{H}, \quad CP_1 \sqsubseteq CP_2 \iff CP_1 \rightarrow^*_\mathcal{H} CP_2
\]

- If \(tgt \) is a concept representing a patient, the hierarchical classification of \(tgt \) in \(\mathcal{H} \) highlights the concepts \(CP \) of \(\mathcal{H} \) such that \(tgt \sqsubseteq CP \).

- Then, the treatments associated thanks to protocol rules with these concepts \(CP \) are returned:

\[
\begin{align*}
\text{tgt} & \quad \text{tgt} \sqsubseteq \text{CP} & \quad \text{CP} \rightarrow \text{Ttt} \\
\hline
\text{Ttt is proposed to tgt}
\end{align*}
\]
Reasoning in Kasimir

• The reasoning is based on the subsumption relation between concepts:

\[C \sqsubseteq D \quad \text{iff} \quad \text{for every } \mathcal{I}, \mathcal{C}^{\mathcal{I}} \subseteq \mathcal{D}^{\mathcal{I}} \]

• \(\sqsubseteq \) is a partial ordering that allows to organise a set of concepts representing classes of patients, including \(\top \), in a hierarchy \(\mathcal{H} \):

\[\text{for } CP_1 \text{ and } CP_2 \text{ in } \mathcal{H}, \quad CP_1 \sqsubseteq CP_2 \quad \text{iff} \quad CP_1 \rightarrow^*_{\mathcal{H}} CP_2 \]

• If \(tgt \) is a concept representing a patient, the hierarchical classification of \(tgt \) in \(\mathcal{H} \) highlights the concepts \(CP \) of \(\mathcal{H} \) such that \(tgt \sqsubseteq CP \).

• Then, the treatments associated thanks to protocol rules with these concepts \(CP \) are returned:

\[
\begin{array}{ccc}
tgt & tgt \sqsubseteq CP & CP \rightarrow Ttt \\
\hline
Ttt \text{ is proposed to } tgt
\end{array}
\]

• Algorithm: depth-first search in \(\mathcal{H} \).
Example of protocol representation

For a woman with $N = -$, $RH = +$ and tumour grade = 1:

- **age** ≤ 35?
 - yes
 - **tumour size** < 1 cm?
 - yes
 - chemotherapy of level 1
 - no
 - ...
 - no
 - **age** < 70?
 - yes
 - chemotherapy of level 1
 - no
 - ...

Example of protocol representation

For a woman with $N = -$, $RH = +$ and tumour grade = I:

```
\text{age} \leq 35? \\
\text{yes} \\
\text{tumour size} < 1 \text{ cm?} \\
\text{yes} \\
\text{chemotherapy of level 1} \\
\text{no} \\
\text{age} < 70? \\
\text{yes} \\
\text{chemotherapy of level 1} \\
\text{no} \\
\text{no chemotherapy}
```

Introduction of primitive concepts:
- any-boolean $\sqsubseteq \top$
- true \sqsubseteq any-boolean
- false \sqsubseteq any-boolean
- any-grade $\sqsubseteq \top$
- grade-I \sqsubseteq any-grade
- any-treatment $\sqsubseteq \top$
- level-1-chemotherapy \sqsubseteq any-treatment
- no-chemotherapy \sqsubseteq any-treatment
Example of protocol representation

For a woman with $N = -$, $RH = +$ and tumour grade = I:

\[
\begin{align*}
\text{age} \leq 35? & \\
\text{yes} & \quad \text{tumour size < 1 cm?} \quad \text{(chemotherapy of level 1)} \\
\text{no} & \quad \text{age} < 70? \\
\text{yes} & \quad \text{no chemotherapy} \\
\text{no} & \quad \text{...}
\end{align*}
\]

Introduction of defined concepts:

\[
\begin{align*}
\text{WN}_-\text{RH}_+\text{G}_I & \equiv (\text{sex: female} \sqcap \text{N: false} \sqcap \text{RH: true} \sqcap \text{tumour: grade: grade-I}) \\
A_{\leq 35} & \equiv \text{WN}_-\text{RH}_+\text{G}_I \sqcap (\text{age:}[0, 35]) \\
A_{>35} & \equiv \text{WN}_-\text{RH}_+\text{G}_I \sqcap (\text{age: }]35, +\infty[) \\
T_{\geq 1} & \equiv A_{\leq 35} \sqcap (\text{tumour: (size:}[1; +\infty[)) \\
A_{\geq 70} & \equiv A_{>35} \sqcap (\text{age:}[70, +\infty[)
\end{align*}
\]
Example of protocol representation

For a woman with $N = −$, $RH = +$ and tumour grade = 1:

```
age ≤ 35?
  yes
  tumour size < 1 cm?
    yes
    ⋮
    (chemotherapy of level 1)
  no
  age ≤ 70?
    yes
    ⋮
    (no chemotherapy)
  no
```

Introduction of protocol rules:

\[
R_1 = (T_{\geq 1} \rightarrow \text{level-1-chemotherapy})
\]

\[
R_2 = (A_{\geq 70} \rightarrow \text{no-chemotherapy})
\]
The Kasimir user interface
Editing and maintenance of knowledge

- Use of the Protégé system to edit Kasimir protocols.
Editing and maintenance of knowledge

- Use of the Protégé system to edit Kasimir protocols.
- Use of the Kasimir reasoner, connected with Protégé, to avoid editing mistakes.
Editing and maintenance of knowledge

- Use of the Protégé system to edit Kasimir protocols.
- Use of the Kasimir reasoner, connected with Protégé, to avoid editing mistakes.
 - Detection of equivalent concepts

\[W_{\geq 16} = (\text{sex:female} \sqcap \text{age:}[16, +\infty]) \]
\[W_{> 15} = (\text{sex:female} \sqcap \text{age: } [15, +\infty]) \]
Editing and maintenance of knowledge

- Use of the Protégé system to edit Kasimir protocols.
- Use of the Kasimir reasoner, connected with Protégé, to avoid editing mistakes.
 - Detection of equivalent concepts
 \[
 W_{\geq 16} = (\text{sex:female} \sqcap \text{age:}[16, +\infty])
 \]
 \[
 W_{>15} = (\text{sex:female} \sqcap \text{age: }]15, +\infty[)
 \]
 - Detection of mismatches between
 * The hierarchy declared in Protégé
 * The hierarchy calculated in Kasimir
Editing and maintenance of knowledge

- Use of the Protégé system to edit Kasimir protocols.
- Use of the Kasimir reasoner, connected with Protégé, to avoid editing mistakes.
 - Detection of equivalent concepts

 \[W_{\geq 16}
 = (\text{sex: female} \sqcap \text{age: } [16, +\infty]) \]
 \[
 W_{>15}
 = (\text{sex: female} \sqcap \text{age: }]15, +\infty[) \]

 - Detection of mismatches between
 * The hierarchy declared in Protégé
 * The hierarchy calculated in Kasimir

- Two hierarchy visualisation modules connected with Protégé: Palétuvier and Hypertree
Decision Support and Knowledge Management in Oncology using Hierarchical Classification – p. 9
HyperTree
HyperTree
KILT: comparison of protocol versions
KILT: comparison of protocol versions

- **Given:** two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
- Two hierarchies organising classes of patients CP, possibly related with treatments.
KILT: comparison of protocol versions

- Given: two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
 - Two hierarchies organising classes of patients CP, possibly related with treatments.

- KILT enables to distinguish:
KILT: comparison of protocol versions

- **Given:** two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
- Two hierarchies organising classes of patients CP, possibly related with treatments.

- **KILT enables to distinguish:**
 - What is **obsolete**: the concepts CP representing the classes of patients appearing in P_{before} but not in P_{after}
KILT: comparison of protocol versions

- Given: two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
 - Two hierarchies organising classes of patients CP, possibly related with treatments.
- **KILT** enables to distinguish:
 - What is **obsolete**: the concepts CP representing the classes of patients appearing in P_{before} but not in P_{after}
 - What is **new**: the concepts CP representing the classes of patients appearing in P_{after} but not in P_{before}
KILT: comparison of protocol versions

- Given: two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
 - Two hierarchies organising classes of patients CP, possibly related with treatments.

- KILT enables to distinguish:
 - What is obsolete: the concepts CP representing the classes of patients appearing in P_{before} but not in P_{after}
 - What is new: the concepts CP representing the classes of patients appearing in P_{after} but not in P_{before}
 - The classes of patients CP appearing in both P_{before} and P_{after}, but associated with different solutions
KILT: comparison of protocol versions

- Given: two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
- Two hierarchies organising classes of patients CP, possibly related with treatments.

- **KILT** enables to distinguish:
 - What is obsolete: the concepts CP representing the classes of patients appearing in P_{before} but not in P_{after}
 - What is new: the concepts CP representing the classes of patients appearing in P_{after} but not in P_{before}
 - The classes of patients CP appearing in both P_{before} and P_{after}, but associated with different solutions
 - What is unchanged: the rest
KILT: comparison of protocol versions

- Given: two versions of the protocol
 - P_{before}: “before updating”
 - P_{after}: “after updating”
- Two hierarchies organising classes of patients CP, possibly related with treatments.

- **KILT** enables to distinguish:
 - What is **obsolete**: the concepts CP representing the classes of patients appearing in P_{before} but not in P_{after}
 - What is **new**: the concepts CP representing the classes of patients appearing in P_{after} but not in P_{before}
 - The classes of patients CP appearing in both P_{before} and P_{after}, but associated with different solutions
 - What is **unchanged**: the rest

- **KILT** is used during an editing session:
 - P_{before}: the protocol at the beginning of the session
 - P_{after}: the protocol at the current time
KILT: comparison of protocol versions
KILT: comparison of protocol versions
KILT: comparison of protocol versions
KILT: comparison of protocol versions

Decision Support and Knowledge Management in Oncology using Hierarchical Classification – p. 11
• Let CP_1 and CP_2 be the following following concepts:

$$CP_1 = (\text{sex:female} \sqcap \text{tumour:}(\text{size:}[0;4]))$$

$$CP_2 = (\text{sex:female} \sqcap \text{tumour:}(\text{size:}]4;7]))$$
• Let CP_1 and CP_2 be the following following concepts:

$$CP_1 = (\text{sex: female} \sqcap \text{tumour:(size:}[0;4]))$$
$$CP_2 = (\text{sex: female} \sqcap \text{tumour:}(\text{size: }]4;7)))$$

• They are assumed to be related to different treatments:

$$R_1 = (CP_1 \rightarrow Ttt_1) \quad R_2 = (CP_2 \rightarrow Ttt_2) \quad \text{with} \ Ttt_1 \neq Ttt_2$$
Let \(CP_1 \) and \(CP_2 \) be the following concepts:

\[
CP_1 = (\text{sex: female} \land \text{tumour:(size: [0; 4])})
\]

\[
CP_2 = (\text{sex: female} \land \text{tumour:(size:]4; 7])})
\]

They are assumed to be related to different treatments:

\[
R_1 = (CP_1 \rightarrow Ttt_1) \quad R_2 = (CP_2 \rightarrow Ttt_2) \quad \text{with } Ttt_1 \neq Ttt_2
\]

Let \(tgt \) be the following patient:

\[
tgt = (\text{sex: female} \land \text{age: [56, 56]} \land \text{tumour:(size: [3.8; 3.8])})
\]
Fuzzy Kasimir

- Let CP_1 and CP_2 be the following following concepts:

 \[
 CP_1 = (\text{sex: female} \sqcap \text{tumour: (size: } [0; 4]))
 \]
 \[
 CP_2 = (\text{sex: female} \sqcap \text{tumour: (size: }]4; 7]))
 \]

- They are assumed to be related to different treatments:

 \[
 R_1 = (CP_1 \rightarrow Tt_{t1}) \quad R_2 = (CP_2 \rightarrow Tt_{t2}) \quad \text{with } Tt_{t1} \neq Tt_{t2}
 \]

- Let tgt, be the following patient:

 \[
 tgt = (\text{sex: female} \sqcap \text{age: } [56, 56] \sqcap \text{tumour: (size: } [3.8; 3.8]))
 \]

- **Kasimir** (classical) reasoning:

 since $tgt \sqsubseteq CP_1$ and $tgt \not\sqsubseteq CP_2$

 Tt_{t1} is proposed but not treatment Tt_{t2}
Fuzzy Kasimir

• **Kasimir** (classical) reasoning:

\[
\text{since } \text{tgt} \subseteq \text{CP}_1 \quad \text{and} \quad \text{tgt} \not\subseteq \text{CP}_2
\]

\(\text{Tt}_1\) is proposed but not treatment \(\text{Tt}_2\)

• **Kasimir** fuzzy reasoning:

both treatments are proposed, with a preference for \(\text{Tt}_1\)
• **KASIMIR** fuzzy reasoning is based on fuzzy concepts and fuzzy subsumption.
• **KASIMIR** fuzzy reasoning is based on *fuzzy concepts* and *fuzzy subsumption*.

• Fuzzy concepts:
• **Kasimir** fuzzy reasoning is based on
fuzzy concepts and fuzzy subsumption.
• Fuzzy concepts:
 – concepts C that are interpreted by fuzzy sets C^I.

Fuzzy *Kasimir*
Fuzzy Kasimir

- **Kasimir** fuzzy reasoning is based on *fuzzy concepts* and *fuzzy subsumption*.
- Fuzzy concepts:
 - concepts C that are interpreted by fuzzy sets C^I.
 - In **Kasimir**, the fuzziness is introduced by substituting intervals I by fuzzy sets $\mathcal{F}I$.
Fuzzy Kasimir

- **Kasimir** fuzzy reasoning is based on
 fuzzy concepts and *fuzzy subsumption*.
- Fuzzy concepts:
 - concepts C that are interpreted by fuzzy sets C^I.
 - In **Kasimir**, the fuzziness is introduced by substituting intervals I by fuzzy sets $\mathcal{F}I$.
- Fuzzy subsumption:
 - $\varphi(C,D) \in [0;1]$
 - φ is a fuzzification of \sqsupseteq
 $$\varphi(C,D) = 1 \quad \text{iff} \quad C \sqsupseteq D$$
Fuzzy Kasimir

- **Kasimir** fuzzy reasoning is based on fuzzy concepts and fuzzy subsumption.
- Fuzzy concepts:
 - concepts C that are interpreted by fuzzy sets C^I.
 - In Kasimir, the fuzziness is introduced by substituting intervals I by fuzzy sets FI.
- Fuzzy subsumption:
 - $S(C,D) \in [0;1]$
 - S is a fuzzification of \sqsubseteq
- Fuzzy reasoning:

\[
\begin{array}{rcl}
\text{tgt} & S(pb,tgt) = s & \text{Sol(pb) is a solution of pb} \\
\text{Sol(tgt)} & = \text{Sol(pb)} & \text{is an s-solution of tgt}
\end{array}
\]
Fuzzy Kasimir

- **Kasimir** fuzzy reasoning is based on fuzzy concepts and fuzzy subsumption.
- Fuzzy concepts:
 - concepts C that are interpreted by fuzzy sets C^I.
 - In **Kasimir**, the fuzziness is introduced by substituting intervals I by fuzzy sets FI.
- Fuzzy subsumption:
 - $S(C,D) \in [0;1]$
 - S is a fuzzification of \sqsubseteq
- Fuzzy reasoning:

\[
\begin{align*}
tgt \quad S(pb, tgt) = s \quad \text{Sol(pb) is a solution of pb} \\
\text{Sol(tgt) = Sol(pb) is an } s\text{-solution of tgt}
\end{align*}
\]

- Algorithm: best-first search of the hierarchy H according to $S(C, tgt)$.
The fuzzy Kasimir user interface
Ongoing researches of the Kasimir project
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
 - Translation of Kasimir representation language to OWL Lite
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
 - Translation of Kasimir representation language to OWL Lite
 - Semantic portal architecture (with services, ontologies, etc.)
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
 - Translation of Kasimir representation language to OWL Lite
 - Semantic portal architecture (with services, ontologies, etc.)
- Protocol adaptation
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
 - Translation of Kasimir representation language to OWL Lite
 - Semantic portal architecture (with services, ontologies, etc.)

- Protocol adaptation
 - Useful when the straightforward application of the protocol raises problems (e.g., contraindications).
Ongoing researches of the Kasimir project

- Towards a Semantic Web portal for oncology
 - Translation of Kasimir representation language to OWL Lite
 - Semantic portal architecture (with services, ontologies, etc.)

- Protocol adaptation
 - Useful when the straightforward application of the protocol raises problems (e.g., contraindications).
 - Researches for adaptation knowledge acquisition for Kasimir:
 * supervised
 * automatic